命題d‘地區碼第4位不為1’,
命題e‘地區碼第5位為1’,
命題f‘地區碼第5位不為2’
命題g‘地區碼第6位不為9’
命題h‘地區碼第7位不為9’
┐a∧┐b∧┐c∧┐d∧e,這是10011,三亞榆林,它符合5號卡袋的表達式,所以這些卡片位於5號卡袋中,可以記為5。
┐a∧┐b∧┐c∧┐d∧┐e∧┐f∧g,這是100120~100128,三亞田獨11~89公社,它符合7號卡袋的表達式,所以這些卡片位於7號卡袋中,可記為7。
┐a∧┐b∧┐c∧┐d∧┐e∧┐f∧┐g∧h,這是1001290~1001298,三亞田獨90~98公社,它符合8號卡袋的表達式,所以這些卡片位於8號卡袋中,可記為8。
後兩者合起來,即7v8,是三亞田獨,但不包括奴隸。三者全部合起來,即5v7v8,是我們所要的結果。因為這個表達式符合我們上麵的形式,所以分類機可以解決。”
“而‘(a∧b∧c)v(a∧d∧e)’,無論我們怎樣變換,是不能變換成上述表達式的,因而是當前的分類機所不能解決的。”
“好,問題來了,怎樣變換表達式?”這時他看向了馮珊。
“這是0和1的布爾代數。”馮珊答道,她的眼睛裡透出著迷的神色。
馮諾點點頭,錢羽之和李加奈此前已經完全不知所雲了,不過聽到布爾代數,他們有點反應過來了。
馮諾隻教過他倆最簡單的布爾代數,以至於他們以為布爾代數就是0和1的布爾代數。
“然後呢?”馮諾繼續引導。
“布爾代數是有補分配格!交運算是‘與’,並運算是‘或’,求補是‘非’,滿換律、結合律、吸收律,‘與’和‘或’彼此滿足分配律!01布爾代數還滿足冪等律!”
這是布爾代數的理論部分,錢羽之和李加奈又糊塗了。
“很好。”馮諾表揚了一句。
“不過,”他又補充說,“格的基本運算律隻是‘與’和‘或’兩種運算之間的,包括交換律、結合律、吸收律、冪等律、分配律等等。在命題邏輯裡,還要考慮‘非’的性質,這裡我暫時隻說兩點其一,雙重否定律,很顯然,命題的非命題的非命題,是其自身。其表達式的形式是——”
馮諾在黑板上寫下
┐┐aa;
“其二,德……唉,就叫‘與或轉換律’吧,兩個命題的合取的非,是兩個命題的非的析取;兩個命題的析取的非,是兩個命題的非的合取。其表達式的形式是——”
他又寫下
┐(a∧b)┐av┐b,
┐(avb)┐a∧┐b。
“我舉兩個例子你們就明白了,‘不是16歲以上的男人’,也就意味著是‘16歲以下的人’或‘女人’;‘不是原籍海南或福建的人’,也就意味著‘不是原籍海南的人’並且‘不是原籍福建的人’。”
然後他繼續說道,“根據這些運算律,可以把邏輯命題的表達式變換成各種形式,不過,一般我們會變換成連續‘與’的‘或’,或者連續‘或’的‘與’,稱為析取範式和合取範式。”
“好,有了理論工具,我們就能夠發現,目前分類機在設計上存在局限性。如果分類機能夠處理一般的析取範式或者合取範式,就不存在從設計上無法解決的問題了。——比如‘找出原籍福建或海南的人’。”
“這就要求我們的每個讀卡單元,不是僅能判斷一個簡單命題的真假,而是能夠判斷多個簡單命題構成的合取項或者析取項的真假。反映在分類機設計上,就是把讀卡單元目前僅包括1個工作繼電器和1個控製繼電器的簡單電路,改造成包含多個繼電器的開關電路。”
“羽之,你這段時間已經很熟悉電路了。你來組裝一個有兩個開關和一個燈泡的電路,要求‘隻有2個開關都閉合,燈泡才亮’。”
馮諾指了指一旁的工作台。工作台上有一大堆導線、繼電器、燈泡和開關,台下放著兩個笨重的鐘式電池,萬用表和其他幾種儀器則被丟在工作台的角落裡。
錢羽之熟練地來到工作台前忙活起來,他首先從電池的正負極引出了導線,然後把燈泡連入電路,燈泡亮了。接著,他把兩個開關用導線連起來,又和燈泡、電池連在了一起。
馮諾讓三名學生都去試一下,是不是隻有2個開關都閉合時,燈泡才亮,如果有任意1個開關是斷開的,燈泡就熄滅。
-------------------------------
下次更新第七卷兩廣攻略篇61節